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Interactions between host and bacterial cells form an 
integral part of human physiology. Colonizing bacteria 
may attach to mucosal surfaces or bind specifically to 
host receptors at epithelial linings and must adapt their 
growth and metabolism to the respective microenviron-
ment. Conversely, to respond adequately to colonizing 
microorganisms, our immune system must continuously 
distinguish beneficial bacteria from harmful pathogens. 
In addition, it is increasingly appreciated that the poten-
tially harmful encounter with a bacterial pathogen is not 
only determined by the presence or absence of virulence 
traits in that bacterium but also by when, where and how 
it interacts with host cells. Furthermore, m an y infectious 
diseases are polymicrobial in nature and disorders in 
the composition of t                                                                                                                                                      h e m                                        y                    r             i  a  ds o    f b ac te ria, f  u n  gi a  n d 
v  i r  us  es t  h a t c  o n  st  i t ute the host- associated microbiota 
substantially influence the susceptibility or resistance 
to infection.

Complexity extends to the host whose tissues and 
organs comprise multiple different cell types that engage 
in extensive crosstalk. Furthermore, spatial aspects 
determine the outcome of host–microbe encounters. 
Pathogens occupy specific niches within their host body, 
wherein they persist or wherefrom they disseminate, cre-
ating vastly different microenvironments. However, even 
within a defined host niche, phenotypic heterogeneity 
between genetically identical cell populations can lead 
to divergent results with sometimes severe effects for the 
host. The resultant variability in host–microbe interac-
tions might contribute to therapeutic failures and the 
establishment of chronic, recurring infections1. Overall, 
to fully understand the major principles of host–microbe 

interactions in health and disease, high- resolution 
approaches are needed that can capture their full com-
plexity at different scales, from the level of the whole 
organism down to its individual single cells.

Experimental infection systems — both animal 
models2 and advanced 3D in vitro tissues3 — are improv-
ing in their capacity to recapitulate the in vivo situation 
within human niches. In parallel, the technologies to 
measure the biological activities of the involved organ-
isms keep improving. For instance, infection biologists 
can currently draw on different global approaches to 
study host–microbe encounters at a systems level (Box 1). 
Among these approaches, transcriptomic methods 
record steady- state levels of transcripts and can thereby 
provide a snapshot of the cellular physiology.

Thanks to their sensitivity, cost- efficiency and 
generic nature, transcriptomics by next- generation RNA 
sequencing (RNA- seq) has been popular in studying 
host–microbe interactions4. Since the introduction of 
RNA- seq to the field of infection biology about a decade 
ago, there have been three major phases with respect to 
the analysis of host–microbe interactions (Fig. 1). In the 
first phase, host and bacterial cells were physically sep-
arated from one another and their transcriptomes were 
analysed individually. The second phase begun with 
the realization that its high discriminatory power and 
intrinsic single- nucleotide resolution render RNA- seq 
an exceptionally powerful technique for the simultane-
ous detection and quantification of transcripts from dif-
ferent interacting organisms5. This was accompanied by 
a rethink that non- coding transcripts — long regarded as 
mere by- products of RNA- seq profiling — reveal crucial 
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Box 1 | Orthogonal ‘omics’ technologies and their use for host–microbe interaction studies

Genomics and epigenomics
omics techniques aim at the global detection of biomolecules in an 
organism to infer biological insights (see the Table). Genomics refers to  
the determination of the genetic content of an organism by sequencing  
its genomic DnA. Comparative genomics was harnessed to unravel  
the similarities and differences within the (virulence) gene content of 
related bacterial species198, to study human host adaptation of bacterial 
pathogens199, to trace the spread of infectious diseases200, or to uncover 
SnPs and insertions/deletions (indels) that render human subjects or whole 
populations more susceptible to certain infections201. However, genomics  
is also moving away from single- sided studies and striving to set host and 
pathogen in context by profiling host genetic susceptibility and pathogen 
genetic variation in conjunction202.

Whereas the genetic blueprint defines the molecular processes that a 
given organism is theoretically capable of, it fails to determine the genes 
that are currently activated under the given condition. Chemical chromatin 
modifications are marks of the transcriptional activity at a given locus. 
Technological breakthroughs in deep- sequencing technologies (Box 2)  
now enable the detection of modified DnA bases and gave rise to the field 
of host–pathogen epigenomics203,204. more commonly, RnA serves as a 
direct readout of transcriptional activity; however, it should be noted that 
the transcriptome of a cell always reflects the sum of de novo transcription 
and transcript decay. Although mRnA levels are typically used as a proxy 
for protein expression, there may be cases where this assumption is violated 
(see main text). Rather, ribosome profiling (Ribo- seq) or mass spectrometry 
(mS) provide insight into the composition of a cellular proteome at any 
given point in time.

Translatomics and proteomics
Ribo- seq has long been restricted to cultivatable species and has 
traditionally been used on pure bacterial cultures205; however, 
technological improvements, particularly with respect to input material 
constraints, now enable ‘metaRibo- seq’ studies of complex bacterial 
consortia such as the intestinal microbiota206. Ribo- seq can also be applied 
to mammalian cells and even dual Ribo- seq studies have recently been 
reported, for example, for diverse virus- infected cells207 and for human 
fibroblasts infected with a eukaryotic parasite208. However, divergence  
in the technical details, foremost the different compounds needed to  
stall the prokaryotic and eukaryotic translation apparatus, has so far 
prevented cross- kingdom Ribo- seq of bacteria- infected host cells.

Whereas Ribo- seq measures global translation rates, label- free and 
label- based mS methods detect translation products directly, providing an 
accurate reflection of the composition of a cellular proteome at any given 
point in time206. However, while RnA- seq- based approaches are capable of 
discovering novel, previously unannotated transcripts, mS generally relies 
on reference data, limiting proteomics to the detection of known proteins 
and, owing to technical limitations, conventional proteomics biases heavily 
against the detection of membrane proteins209. Additionally, owing to 
codon degeneracy, the resolving power of mS is inferior to RnA- seq and, 
lacking the possibility to amplify peptides prior to mS, current proteomics 
cannot reach the sensitivity of genomics, transcriptomics or Ribo- seq  
for which the input nucleic acids may be amplified at will. For example, 
metaproteomics that profile protein levels in complex bacterial consortia 

(such as the human faecal microbiome) typically detect only a minimal 
fraction of the total number of proteins present in that sample (only the 
most abundant 0.1–0.0001%)210. Consequently, host–microbe proteomics — 
measuring bacterial and eukaryotic protein levels simultaneously — is 
uncommon. nevertheless, one- sided infection studies exist that profiled, 
for example, proteome changes in Salmonella enterica subsp. enterica 
serovar Typhimurium during host infection211 or determined the host 
factors required for intra- epithelial Salmonella replication212 or cell death  
of Salmonella- infected macrophages213. Proteomics methods also lend 
themselves to mapping protein–protein interaction networks during 
infection, for example, interactions of secreted Salmonella effectors with 
host target proteins214. Thus, proteomic approaches to host–microbe 
interactions can complement transcriptomics215 and both RnA- seq and  
mS are being increasingly used in the clinics, for example, to accelerate  
the diagnosis of bacterial infections216,217.

Metabolomics
not all proteins lingering in a cell may be functioning. Proteomics has the 
potential to detect post- translational modifications during host–pathogen 
interactions182 and so- called activity- based protein profiling detects active 
enzymes in biological samples and has been successfully applied to shed 
light on the enzymatic crosstalk of the host and pathogen during enteric 
infection218. Additionally, metabolomics gained attraction as it offers  
an even more direct readout of a cell’s phenotype. mirroring infection 
proteomics, host–pathogen metabolomics is a blooming field219. one- sided 
metabolomics was performed to measure host220 or — upon physical 
separation — pathogen metabolic flux changes during an infection221. 
Analysing host and microbial metabolism in parallel is challenging given 
that many core metabolites are shared across kingdoms and cannot  
be unequivocally assigned to their source organism. This difficulty may be 
partially overcome by intelligent experimental design that involves the  
use of axenic cultures or spike- ins, or by complementing host–pathogen 
metabolomics with orthogonal information. For example, a recent study 
combined host–pathogen metabolomics with dual RnA- seq during the 
early infection of human macrophages by Mycobacterium tuberculosis and 
uncovered the robustness of this obligate intracellular pathogen in the face 
of metabolic interventions97. Similarly, metabolomics and metagenomics 
were measured in parallel in lung samples of patients with cystic fibrosis  
to reconstruct the metabolic flow during disease222.

Multi- omics
more generally, the progress made in the individual omics techniques 
fosters such integrative multi- omics approaches to dissect host–microbe 
interactions from multiple angles. For instance, in a Salmonella infection 
study of mice, metagenomics, proteomics and metabolomics of faecal 
samples were combined to link infection with gut microbiota compositional 
and metabolic changes223. Furthermore, in an extremely comprehensive 
survey, microbial metagenomics, transcriptomics, proteomics and 
metabolomics were integrated with host expression profiling to unravel  
the molecular aspects underlying dysbiosis in the human gut microbiome 
during inflammatory bowel disease224. However, integrative omics are 
demanding new bioinformatic tools to take full advantage of the enormous 
amount of information buried within the massive datasets225.

Side- by- side comparison of the properties, strengths and limitations of the different omics methods. DnA- seq, DnA sequencing; lC- mS/mS, liquid chromatography–
tandem mass spectrometry; mRnA, messenger RnA; mS, mass spectrometry; ncRnA, non- coding RnA; RnA- seq, RnA sequencing.

Omics method Target 
biomolecules

Key technologies Sensitivity Resolution From genotype  
to phenotype

Cost per 
sample

Genomics Genomic DNA DNA- seq High High Genetic blueprint Low

Transcriptomics mRNA, ncRNA RNA- seq High High Gene expression  
(RNA level)

Low

Proteomics Protein LC- MS/MS (label based  
or label free)

Low Intermediate Gene expression 
(protein level)

Intermediate

Metabolomics Metabolites MS, NMR (targeted  
or untargeted)

Low Low Direct phenotypic 
readout

High

www.nature.com/nrg

R e v i e w s

362 | June 2021 | volume 22 



0123456789();: 

insights into host–microbe interplay6–8. The present 
third phase is marked by the increasing use of single- cell 
RNA- seq (scRNA- seq) to dissect cellular heterogeneity 
in host–microbe encounters9,10.

Here, we review cross- species transcriptomics, focus-
ing on the interaction of bacterial pathogens or com-
mensals with mammalian (mostly human) host cells. 
We first summarize the similarities and differences 
between bacterial and mammalian transcriptomes and 
transcriptomics, followed by an overview of current 
cross- species approaches. We bring the technologies 
to life with examples of the biological insights that they 
have already provided, including the realization that 
host–microbe interactions are both context dependent 
and highly heterogeneous. We also discuss the current 
limitations of cross- species transcriptomics and how to 
overcome them, especially against the backdrop of the 
current scRNA- seq revolution.

Eukaryotic and bacterial transcriptome features
An organism’s transcriptome may provide a snapshot 
of its physiological state. At the cellular level, this tran-
scriptome is an RNA potpourri of myriads of different 
coding and non- coding transcripts from several major 

classes, some of which are being made, others are already 
present in the cell in their active form, and yet others 
are undergoing decay. Despite two billion years of sepa-
rate evolution, the fundamental RNA classes are shared 
between prokaryotes and eukaryotes (Fig. 2). Ribosomal 
RNAs (rRNAs), serving scaffolding and enzymatic func-
tions in the ribosome, are highly abundant, accounting 
for >80% (and >95% in fast growing cells) of the RNA 
content of bacterial and eukaryotic cells alike. Transfer 
RNA (tRNA) molecules translate RNA language (rib-
onucleobases) into protein information (amino acid 
chains) and generally contribute ~10% to the cellular 
RNA content.

Messenger RNA (mRNA) instructs the ribosome on 
which protein to synthesize. Making up ~5% of the total 
cellular transcriptome in both bacteria and eukaryotes, 
mRNAs are characterized by kingdom- specific features. 
Bacterial genes are on average 1 kb long; however, they 
are often transcribed as polycistrons, resulting in long 
mRNAs that span multiple genes. Primary transcripts 
typically carry a 5′ triphosphate group, while the 3′ 
ends of bacterial mRNAs lack an extended poly(A) 
stretch (3′ polyadenylation does occur, but is limited to 
a few nucleotides that enable rapid transcript decay11).  
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Fig. 1 | The history of RNA-seq-based infection research. The timeline can be broadly subdivided into three phases: 
phase I is characterized by one- sided RNA sequencing (RNA- seq) studies of either host or microorganism, phase II is 
associated with the concept of sequencing multiple transcriptomes together and phase III was heralded with the 
introduction of single- cell RNA- seq (scRNA- seq) technology into infection biology. For each phase and each technology, 
select milestone studies are cited, without claim to completeness. ReFs5,23,26,28,59,62,75,77,83,85,93–96,112,127,128,134,139,140,144,150,184–195.

Axenic cultures
Describes cultures comprised 
of only a single, defined 
bacterial species or strain.
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By contrast, eukaryotic mRNAs carry a 7- methylguanosine  
cap and a poly(A) tail in the range of 70–250 nucleo-
tides (nt). Unlike bacterial mRNAs, which are made in 
a translation- ready form, eukaryotic coding transcripts 
are synthesized as precursor mRNAs with introns and 
exons and undergo splicing (intron removal) in the 
nucleus prior to export to the cytoplasm. The average 
length of mature human mRNAs is ~3 kb; as only mono-
cistrons are present in mammals, extremely long coding 
transcripts (>10 kb) are rare.

Certain additional, specialized RNA molecules 
exist in both kingdoms such as the Y- RNAs, which are 
stable non- coding transcripts that associate with the 
Ro60 autoantigen in mammals12 and Ro60- related pro-
teins in bacteria13, or the RNA component of RNase P 
(M1 RNA)14. However, most non- coding RNA species 
are exclusively found in either bacteria or eukaryotes, 

where they carry out regulatory, enzymatic or scaf-
folding functions. In their sum, these heterogeneous 
transcripts typically contribute another ~5–10% to the 
bacterial or eukaryotic transcriptome, although the rel-
ative proportion of bacterial non- coding RNAs seems to 
strongly increase under certain conditions15. Most bac-
teria express dozens to hundreds of different small reg-
ulatory RNAs (sRNAs)16. An sRNA may be transcribed 
from an intergenic non- coding gene or cleaved off the 
end of an mRNA. Most sRNAs regulate target genes 
post- transcriptionally by short base pair interactions 
with the respective mRNAs.

Non- coding RNAs specific to eukaryotic transcrip-
tomes include small nuclear RNAs (snRNAs) and small 
nucleolar RNAs (snoRNAs), which are involved in the 
splicing of precursor mRNAs or the chemical modifica-
tion of rRNAs and tRNAs, respectively, and localize to 
nuclear compartments. PIWI- interacting RNAs (piRNAs)  
are best known for silencing transposable elements in 
the germ line, while non- coding RNAs in somatic cells 
are generally divided into microRNAs (miRNAs) and 
long non- coding RNAs (lncRNAs). The homogeneous 
class of miRNAs, with their mature form being ~22 nt 
long, localize to the cytosol, where they regulate target 
mRNAs in a sequence- dependent manner reminiscent 
of bacterial sRNAs. By contrast, lncRNAs are more het-
erogeneous and are operationally defined as non- coding 
transcripts >200 nt in length (note, however, that there is 
an ongoing debate as to how many of them encode short 
peptides17). Some lncRNAs carry a 3′ poly(A) tail while 
others are not polyadenylated. lncRNAs may be retained 
in the nucleus, where they can help to regulate the chro-
matin state, or localize to the cytoplasm and fulfil diverse 
functions, for example, maintaining subcellular com-
partments, serving as scaffolds for ribonucleoparticle  
assembly or sequestering miRNAs, to name but a few18.

The differences between transcript repertoires are 
accompanied by a quantitative disparity between bac-
terial and eukaryotic cellular RNA contents (Fig. 2). The 
Escherichia coli genome has a size of ~5 Mbp, whereas 
the entire human genome is ~3,000 Mbp. The RNA 
content also differs dramatically: an average E. coli cell 
contains ~100 fg of RNA, whereas an average human  
cell contains up to 30 pg RNA, that is, several hundred 
times more19. Overall, these qualitative and quanti-
tative transcriptome differences are reflected in the 
current standard RNA- seq protocols for bacterial and 
mammalian samples.

Bacterial versus eukaryotic RNA- seq workflows
The standard steps in an RNA- seq experiment are the 
purification of nucleic acids from a biological sample, 
enzymatic digestion of contaminating genomic DNA, 
depletion of abundant but less informative rRNA, con-
version of the remaining transcripts into complemen-
tary DNA (cDNA), high- throughput sequencing of the 
cDNA fragments, alignment of the resulting sequenc-
ing reads to a reference genome sequence and quan-
tification of the reads mapped to individual genetic 
features. RNA- seq provides various readouts, as follows. 
Counting all sequencing reads from the same transcript 
reveals the relative expression of the corresponding gene. 
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Fig. 2 | Comparison of cellular RNA content between bacteria and mammals. Pie 
charts of the fraction of different gene classes in the genome (left; from RefSeq) or RNA 
molecules in the transcriptome (from ReF.5) in Salmonella enterica subsp. enterica serovar 
Typhimurium (upper) and humans (lower). The area of the bacterial pie charts is magnified 
by the indicated factors; the unmagnified pie charts reflect the relative size of the 
Salmonella genome/transcriptome compared with the human genome/transcriptome. 
Informative transcript classes (mRNAs and regulatory non- coding RNAs) to deduce 
cellular states are highlighted (*). lncRNAs, long non- coding RNAs; miRNAs, microRNAs; 
rRNAs, ribosomal RNAs; sRNAs, small RNAs; snRNAs, small nuclear RNAs; snoRNAs, small 
nucleolar RNAs; tRNAs, transfer RNAs.
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Additionally, read coverage distributions reveal general 
transcript features such as 5′ and 3′ boundaries, process-
ing sites, and operon (for bacteria) or intron–exon (for 
eukaryotes) structures. Researchers can choose between 
different library preparation pipelines and RNA- seq 
platforms that all come with specific strengths and 
weaknesses (Box 2). For more details of the sequencing 
technologies available, we refer the reader to recent spe-
cialized reviews20,21. Suffice to say here that the current 
standard for both bacterial and eukaryotic expression 
profiling is ‘short- read’ sequencing- by- synthesis using 
Illumina technology. Here, we restrict ourselves to dis-
cussing the commonalities and differences of the com-
monly used bacterial and eukaryotic Illumina- based 
RNA- seq protocols (Fig. 3a), as these are closest to being 
developed into multi- species RNA- seq approaches.

Transcriptome fixation, cellular lysis and RNA extrac-
tion. Sample processing may be time- consuming and 
can involve multiple handling steps, especially so in 
scenarios where specific subpopulations of bacterial or 
host cells are collected. Given that transcriptomes are 
notoriously unstable, in such cases, the RNA composi-
tion should be preserved with the help of fixatives that 
block de novo transcription and RNA decay. A variety 
of RNA- preserving reagents exist — each with specific 
strengths and weaknesses22 — and are increasingly 

used for robust microbe–microbe and host–microbe 
transcriptomics23–27. A systematic evaluation of sev-
eral standard fixation methods showed unexpected 
substantial fragmentation of RNA after isolation from 
infection samples, with consequences for the cover-
age of different RNA classes in subsequent RNA- seq28.  
As a general guideline, as both formaldehyde- based and 
alcohol- based fixation can have adverse effects on RNA 
integrity24, ammonium sulfate- containing stabilizing rea-
gents, such as the commercial RNAlater (Sigma- Aldrich) 
or RNAprotect (QIAGEN), are often preferred for whole- 
transcriptome studies. However, in experimental setups 
that rely on sort- enrichment, careful evaluation of these 
RNA- preserving reagents is recommended as they might 
quench the fluorescent signals of marker proteins.

The physicochemical properties of prokaryotic and 
eukaryotic cells differ vastly, as they do among bacte-
rial species themselves (for example, Gram- negative 
versus Gram- positive bacteria). For instance, whereas 
Gram- negative bacterial cells can easily be cracked, 
also allowing joint lysis with mammalian host cells, 
the efficient disruption of Gram- positive bacterial cell 
walls often depends on enzymatic and/or mechanical 
treatment. It is thus advisable to carefully evaluate lysis 
efficiencies for cross- species transcriptomics. That is, 
lysis conditions need to be empirically established that 
are sufficiently harsh to effectively and homogeneously 
break up all cell types in the sample, while still being 
mild enough to not degrade cellular RNAs.

Once the lysates are prepared, downstream RNA iso-
lation techniques are typically interchangeable between 
organisms but may bias towards individual RNA classes 
dependent on their size, secondary structure and degree 
of modification. Further information on these topics can 
be obtained from ReF.29.

Ribodepletion. Ribosomes are the most abundant ribo-
nucleoprotein particles in any living cell and, although 
their number fluctuates with growth rate30,31, the rRNA 
they contain will dominate the cellular RNA pool. 
Although rRNA reads in RNA- seq data are occasionally 
used to infer bacterial replication rates32,33, this tran-
script class is commonly depleted in both bacterial and 
eukaryotic RNA- seq to indirectly increase coverage of 
mRNAs and other informative RNA classes. However, 
ribodepletion strategies partly differ between bacterial 
and eukaryotic studies.

In bacteria, rRNA is typically removed actively 
before or during cDNA library generation. Most com-
monly, it is pulled out from the pool of total RNA by 
sequence- specific ‘capture oligonucleotides’ that can be 
biotinylated (for example, riboPOOL from siTOOLs) or 
coupled to magnetic beads (for example, RiboCop from 
Lexogen), available as commercial or ‘do- it- yourself ’ 
kits34, reaching depletion efficiencies of >95%35,36. 
Alternatively, upon incubation with sequence- specific 
DNA oligonucleotides, the resulting rRNA–DNA 
hybrids are digested with RNase H (a principle incorpo-
rated in some NEBNext protocols and in Illumina’s new 
Ribo- Zero Plus technology). Recently, we have intro-
duced bacterial rRNA depletion at the cDNA level with 
programmed Cas9 nuclease cleavage37. This technique, 

Box 2 | Alternative cDNA library preparation and sequencing technologies

RNAtag- seq
The primary aim of most RnA sequencing (RnA- seq) studies is to determine the set of 
differentially expressed genes in an organism in response to an experimental stimulus. 
However, for differential expression profiling, full transcript coverage is not needed, 
resulting in the fact that many RnA- seq studies accumulate more information than is 
actually required. In RnAtag- seq226, a barcoded adapter is ligated to the 3′ end of input 
RnA fragments, thus allowing for multiplexing early during library construction. This 
represents a time- efficient and cost- efficient alternative to standard complementary 
DnA (cDnA) library generation protocols. RnAtag- seq works with both prokaryotic and 
eukaryotic input RnA and, because counting the resulting sequencing reads is sufficient 
to call differentially expressed genes, it may be incorporated into cross- kingdom 
RnA- seq approaches.

SEnd- seq
There are opposite cases when ensemble RnA levels are insufficient but when the 
detection of full- length transcripts is key to interpreting biological processes. various 
methods can map transcription start sites in bacteria227 or eukaryotes228 and there  
are alternative methods that determine 3′ ends across bacterial62 or eukaryotic 
transcriptomes229. Recently, simultaneous 5′ and 3′ end sequencing (Send- seq) was 
developed and maps both transcription start and end sites in parallel, in the same 
experiment230. Developed for Escherichia coli, the protocol is generic and should be 
transferable to metatranscriptomics. However, given that Send- seq determines only 
the extreme 5′ and 3′ ends of an input cDnA molecule, the protocol is less suited to 
deducing the full- length mRnA structure in an organism where splicing occurs.

Long- read sequencing
Illumina short- read sequencing technology relies on transcript fragmentation, thereby 
inevitably losing the complete nucleotide composition of individual transcripts.  
As alternatives to the Illumina- based methods above, long- read sequencing  
platforms — such as Pacific Biosciences (which sequences full- length, unfragmented 
cDnA molecules) or oxford nanopore (with the possibility to directly sequence RnA 
molecules, omitting the need for reverse transcription) — are entering the market20,21. 
Although the current read depth, error rate and cost of these platforms cannot compete 
with Illumina technology, they have the ability to read a cDnA/RnA molecule from  
one end to the other and bear great potential for future bacterial231 and eukaryotic232 
(epi)transcriptomics.
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which is generally known as DASH (depletion of abun-
dant sequences by hybridization)38, removes rRNA less 
efficiently but seems particularly suitable for low- input 
samples37. What remains after bacterial ribodepletion are 
mRNAs, sRNAs and tRNAs. As tRNAs require special-
ized protocols for efficient cDNA conversion39–41, it is 
primarily mRNAs and sRNAs that will eventually make 
it into conventional sequencing libraries.

In eukaryotic RNA- seq, rRNA is generally depleted 
indirectly by selective cDNA priming on polyade-
nylated transcripts, that is, primarily mRNAs and  
lncRNAs (poly(A)- selection is an integral part of the 
TruSeq Stranded mRNA kit from Illumina). Alter-
natively, if non- polyadenylated transcripts (for exam-
ple, poly(A)- negative lncRNAs) are also of interest, 
active rRNA removal strategies, such as the commer-
cial riboPOOL, RiboCop or Ribo- Zero Plus technolo-
gies or customized DASH38, may be used. These active 
rRNA removal methods will also be the top choice when  
analysing mixtures of bacteria and eukaryotic host cells 
by so- called dual RNA- seq28, which will be covered  
further below.

cDNA library preparation and sequencing. The dom-
inating Illumina technology offers a maximum read 
length of 300 bp, necessitating fragmentation of total 

RNA samples prior to cDNA conversion for bacteria 
and eukaryotes alike. In bacterial RNA- seq pipelines, 
RNA adapters are then often ligated to the 3′ end of 
the obtained RNA fragments and subsequently used 
as anchors for reverse transcription (RT) via adapter- 
specific primers (as in the popular NEBNext Small 
RNA Library Prep Set; New England Biolabs). Similar 
adapter- based library generation protocols can also be 
used in combination with size- selected, unfragmented 
eukaryotic short RNAs, for example, for miRNA profil-
ing. By contrast, profiling of eukaryotic mRNA expres-
sion generally involves the enrichment of polyadenylated 
transcripts followed by RNA fragmentation and RT by 
random priming (for example, TruSeq Stranded mRNA 
kit; Illumina). Dependent on the sample type and the 
scope of the RNA- seq experiment, alternative, custom- 
tailored library preparation protocols exist, some of 
which are described in Box 2.

The sequencing depth requirements also depend 
on the desired outcome of an RNA- seq experiment. 
Although the accurate mapping of transcript bounda-
ries, operon, or alternative splicing structures and the 
quantification of low- abundance transcripts demand a 
high sequencing depth, most RNA- seq studies in bacte-
ria and eukaryotes are, in essence, differential expression 
analyses and, as such, much less sequencing intensive.  
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Simulation studies proposed ballpark figures of  
5–10 million non- rRNA reads for exhaustive expression 
profiling in bacteria42 and ~20 million non- rRNA reads 
in mammals43,44.

Read alignment, normalization, quantification and 
functional analyses. The concepts of read mapping and 
quantification are shared between bacterial and eukary-
otic RNA- seq, with differences in the details29. As splic-
ing is a molecular process that is exclusive to eukaryotes, 
standard read mappers for prokaryotic RNA- seq gener-
ally save both computing power and time by blanking 
it out, whereas eukaryotic mapping pipelines strictly 
depend on spliced aligners45. Normalization is similar for 
bacterial and eukaryotic RNA- seq data, with the most 
common methods assuming that the expression of a 
substantial fraction of genes is not altered between two 
distinct conditions46. However, this assumption fails for 
the pairwise comparison of extreme conditions, which 
is particularly likely in bacteria that can change a consid-
erable part of their transcriptome and such phenomena 
have fostered the development of normalization tools 
tailored to bacterial RNA- seq data47. On the experimen-
tal side, the inclusion of artificial RNA spike- ins in the 
RNA- seq protocol provides an opportunity to normalize 
to cell numbers48–50.

For differential expression analysis, the DESeq2 
(ReF.51), edgeR52 and limma/voom53 algorithms have been 
most popular. As these tools cannot analyse differential 
isoform usage, RNA- seq studies addressing alternative 
splicing in eukaryotes rely on different algorithms54. 
Once the differentially expressed genes (or isoforms) 
have been identified, these changes are usually subjected 
to global pathway analysis. Both bacterial and eukaryotic 
transcriptomics rely on well- curated databases such as 
Gene Ontology (GO)55 or Kyoto Encyclopedia of Genes 
and Genomes (KEGG)56. Additionally, for the analysis 
of mouse or human RNA- seq data, more- refined data-
bases exist that specialize in, for example, metabolic57 or 
immune- related gene sets58.

In summary, despite the basic steps being shared 
between conventional prokaryotic and eukaryotic 
RNA- seq protocols, experimental and analytical pipe-
lines have diverged over the past decade to satisfy the 
specific needs of the respective target transcriptome.  
As a consequence, early RNA- seq profiling of bacterial 
gene expression in vivo ignored the host transcriptome 
and entailed the physical enrichment of bacteria from 
host tissue, as will be reviewed in the next section.

Bacterial RNA- seq for in vivo transcriptomics
In order to fully exploit global expression data of a host 
and microorganisms, high- resolution transcriptome 
maps are required. Whereas the mouse and human 
transcriptomes have been well annotated over the years, 
fine- grained transcriptome maps are not a given for 
most bacteria. Rather, bacterial transcriptomes are often 
annotated based on computational searches for potential 
open reading frames (ORFs) with a length of >100 amino 
acids but short ORFs, untranslated regions (UTRs) or 
non- coding RNA genes may be missing. Consequently, 
a truly comprehensive global expression analysis 

usually requires prior transcriptome refinement using 
RNA- seq- based techniques, such as differential RNA- seq 
(dRNA- seq; initially applied to Gram- negative species, 
such as Helicobacter pylori59 and Salmonella enterica60, 
and later to Gram- positive species such as Streptococcus 
pneumoniae61), to globally map transcriptional start 
sites or terminator- sequencing (Term- seq; established 
in Listeria monocytogenes62) or end- enriched RNA- seq 
(Rend- seq; established in E. coli and Bacillus subtilis63) 
to determine transcription termination sites. Such ref-
erence transcriptomes are now available for numerous 
aerobic60,64–69 and anaerobic bacteria70. In addition, 
research on Salmonella enterica subsp. enterica serovar 
Typhimurium has greatly benefited from a gene expres-
sion atlas called SalCom, compiling RNA- seq profiles 
under 22 defined in vitro conditions, each mimicking 
specific phases of the Salmonella Typhimurium infection 
cycle15. Similarly, the recently established PATHOgenex 
database71, which features host stress- related in vitro 
transcriptome signatures of 32 human pathogens, 
provides an excellent resource for infection biologists.

The emergence of the field of cellular microbiology 
three decades ago72 brought about a need to study gene 
expression in bacterial pathogens within the context of 
their host organism. The first such approaches relied 
on the physical enrichment of bacteria from infection 
samples, followed by transcriptome analysis of the 
purified bacteria alone. For example, infected eukary-
otic cells were selectively lysed with a detergent and the 
released intracellular bacteria were collected by differ-
ential centrifugation73,74. Strikingly, the gene expression 
profile of S. enterica thus recovered from macrophages 
revealed several activated genes that were silent in any of 
the 22 in vitro conditions in the SalCom atlas. This find-
ing highlights the difficulty in reconstructing host- like 
conditions in a culture flask and underscores the impor-
tance of true cellular microbiology approaches. Similar 
studies have been performed in animal infection models, 
for example, using anti- Staphylococcus aureus antibodies 
coupled to magnetic beads to enrich these bacteria from 
a mouse model of osteomyelitis75, engineering biolumi-
nescent strains of Citrobacter rodentium that enabled 
their recovery from mouse colon tissue by biolumines-
cence imaging27, and Pseudomonas aeruginosa in the 
sputum of patients with cystic fibrosis76. Collectively, 
these studies revealed new virulence strategies and 
metabolic adaptations of these pathogens within their 
host niches.

Even if bacteria are enriched, the resulting transcrip-
tome data may still be dominated by host sequences.  
To minimize the host RNA/cDNA background, bacte-
rial transcripts may be enriched using commercial kits  
(for example, MicrobEnrich; Ambion) that deplete 
eukaryotic rRNA and polyadenylated transcripts. This 
was used for in vivo expression studies of Vibrio cholerae 
in an infant rabbit and mouse model77, of Yersinia pseu-
dotuberculosis in mouse caecal tissue biopsy samples26, 
and of C. rodentium recovered upon infection of mouse 
colon tissue27.

Bacterial transcripts can also be enriched directly. 
‘Hybrid- selection’ refers to the incubation of complex 
cDNA samples with species- specific, biotinylated probes 
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to capture and enrich the cDNAs of interest away from 
the host cDNA background. Hybrid- selection recently 
enabled niche- specific RNA- seq of the gut commensal 
Bacteroides fragilis within the proximal colon78. This 
revealed, for the first time, spatially distinct expression 
profiles of a microbiota member between its luminal, 
mucus- associated and epithelial niches. Although 
the capture probes comprised bait sequences for the 
complete B. fragilis genome, prior knowledge of a 
bacterium’s transcriptome structure can refine probe 
design. For example, biotinylated probes specific for 
bacterial mRNAs and sRNAs (omitting rRNA, tRNA 
or non- transcribed loci) were employed in a techni-
cal study looking at intracellular expression profiles of  
P. aeruginosa or Mycobacterium tuberculosis79. Of note, 
given that enrichment occurs at the cDNA level — that 
is, after sample amplification — hybrid- selection is 
extremely sensitive and works down to the single- cell 
level79. So far, hybrid selection of bacterial cDNA has 
been applied to host cell cultures or gnotobiotic mice after 
monocolonization with the target bacterium. However, 
it should also permit the enrichment of target sequences 
from multi- species samples from conventional mice with 
a complex microbiota to reveal potentially protective 
effects of commensal species.

Cross- species RNA- seq approaches
Steady improvements in RNA- seq technology have 
allowed researchers to advance beyond one- sided 
RNA- seq studies and investigate microorganisms 
together with other microorganisms or with host cells 
in unprecedented detail and under physiological con-
ditions (Fig. 4). The following discussions will focus on 
metatranscriptomics within host- associated bacterial 

consortia and on dual RNA- seq to simultaneously read 
out bacterial and host transcriptomes. We conclude 
the section with an outline of envisaged extensions of 
cross- species RNA- seq.

Metatranscriptomics. Sequencing- based analysis of the 
structure of bacterial communities began with meta-
genomics, that is, the analysis of 16S rDNA sequences  
(16S profiling), before the more sensitive shotgun 
sequencing of genomic DNA became feasible. However, 
the abundance of a certain microbial species or a certain 
gene does not necessarily correlate with the functional 
contribution of that species or gene in the consortium.  
In this regard, metatranscriptomics has been gaining 
popularity for functional insights into interactions 
within microbiomes80.

To minimize the risk of RNA degradation during 
sample preparation, an RNA preserving reagent is often 
used to ‘freeze’ metatranscriptomes23,81. The standardized 
usage of such agents should facilitate cross- comparisons 
between different studies. As for conventional RNA- seq, 
metatranscriptomics typically involves rRNA depletion 
using the same techniques as used for single- species 
RNA- seq35. However, it needs to be stressed that, because 
most commercial rRNA removal kits target model bacte-
ria, they might be less efficient for the many non- model 
species of, for example, the human gut microbiota. 
Cas9- based ribosomal cDNA removal37 on metatran-
scriptomic samples is yet to be tested; again, it should be 
particularly suitable for low- input samples, for example, 
when wanting to profile microbiome activity in an insect 
gut at the RNA level82.

Accurate quantification of gene expression in a 
microbiome requires the calibration of RNA for the 

4b

4a

2

3a

3b
5

1Commensals

Pathogens

Host cells

Fig. 4 | Graphical overview of RNA-seq-based approaches to study inter-species interactions in the mammalian 
intestine. (1) Metatranscriptomics23,83,85,90,196. (2) Dual RNA sequencing (RNA- seq) of an enteric pathogen and infected host 
tissue102,103. (3) Triple RNA- seq112 of viral/bacterial co- infections (3a) or of a bacterial pathogen, a competing commensal 
and their host (3b). (4) Single- cell RNA- seq of individual host cells127,128 (4a) or single bacteria139,140,144 (4b). (5) NICHE- seq134 
to maintain spatial information about the local microenvironment at single- cell resolution. Adapted from ReF.197, CC BY 4.0 
(https://creativecommons.org/licenses/by/4.0/).
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DNA content of the same sample, as done in hybrid 
DNA/RNA- seq analyses23,83–85. To this end, DNA 
and RNA samples are each sequenced to a depth of  
20–40 million Illumina reads. Briefly, the resulting DNA 
and RNA sequencing data are processed separately, with 
the metagenomic data then being used to normalize the 
metatranscriptomic reads. Unsurprisingly, the compu-
tational steps are far from trivial and two orthogonal 
approaches have been developed to this end, namely tax-
onomic classification involving either reference- based 
or de novo metagenome- assembled genomes (MAGs). 
Reference- based classifiers, such as HUMAnN2 (ReF.86), 
Kaiju87 or Kraken2 (ReF.88), work well when community 
member species are largely predetermined and only 
their relative abundances are unknown such as in the 
human intestinal microbiota. If bacterial species within 
a sampled community are not known a priori, de novo 
taxonomic classification that assembles MAGs from 
metagenome reads is preferred89.

Comparative studies of healthy human gut micro-
biomes revealed metatranscriptomic profiles to be 
generally less individual than their metagenomic 
counterparts23,83,85. This argues for subject- specific, 
whole- community regulation, wherein a core set of 
housekeeping transcripts is universally expressed over 
individual subjects but by different microbial species. 
By contrast, longitudinal profiling showed the metatran-
scriptome of an individual to be more variable over time 
than that person’s metagenome, suggesting the active 
regulation of microbial gene expression in response 
to environmental and nutritional fluctuations83,85. 
Compositional (metagenomics) and functional (meta-
transcriptomics) changes in the human intestinal 
microbiota have also been linked with the outcome of 
infectious diseases. In a human challenge model, a gut 
metatranscriptome dominated by mRNAs encoding 
antioxidants and metal ion homeostasis proteins was 
linked to a reduced risk of developing symptoms of 
typhoid upon infection with Salmonella enterica subsp. 
enterica serovar Typhi90.

Dual RNA- seq. Transcriptomics is increasingly being 
harnessed to study interactions across kingdoms, 
foremost between bacterial pathogens and mamma-
lian hosts5,29. Dual RNA- seq measures gene expression 
simultaneously in (intracellular or extracellular) bacte-
ria and infected host cells or tissues. As eukaryotic and 
bacterial material is processed together without prior 
physical separation (Fig. 3b), dual RNA- seq promises the 
discovery of novel interdependencies in host–microbe 
interactions. Technically, dual RNA- seq benefits from 
commercial kits optimized for the parallel depletion of 
prokaryotic and eukaryotic rRNA; when it comes to the 
analysis of clinical samples that often offer only minute 
amounts of RNA, rRNA depletion at the cDNA level (by 
DASH, see above) should be an attractive strategy. The 
sequencing depth overall is not significantly different 
from conventional mammalian RNA- seq provided that 
the bacterial RNA proportion in the sample is within 
0.5–10%29.

Dual RNA- seq has been extensively used to 
unveil previously hidden aspects of Salmonella 

Typhimurium–host cell interactions, for example, how 
the activities of PinT sRNA, which is highly induced 
in intracellular Salmonella, alters epithelial STAT3 
signalling28. Furthermore, dual RNA- seq linked the 
global activities of Salmonella RNA- binding protein 
ProQ with MAPK signalling in epithelial host cells91 
and showed that Salmonella persisters arising during 
macrophage infection maintain a metabolically active 
state that allows them to reprogramme their host 
cells92 (Fig. 5a). Dual RNA- seq studies have also been 
performed with cell culture models of infection with  
S. pneumoniae93, uropathogenic E. coli94 and Haemophilus  
influenza95. Dual RNA- seq is particularly suitable to 
study obligate intracellular pathogens, as demonstrated 
with Chlamydia trachomatis96, M. tuberculosis97,98 
(Fig. 5b) and Orientia tsutsugamushi99 (Fig. 5c). Many of 
these studies were designed as temporal studies to fol-
low the kinetics of bacterial and host gene expression 
during their interaction or as comparative studies com-
paring the expression patterns between infections with 
different bacterial strains. The power of these designs 
is well illustrated with the PinT sRNA, for which dual 
RNA- seq profiling over the course of infection with 
wild- type versus ΔpinT bacteria revealed that PinT 
functions as a post- transcriptional timer in the transi-
tion of Salmonella’s two major virulence programmes, 
with a massive impact on gene expression in infected 
host cells28.

The application of dual RNA- seq is increasingly 
shifting from host cell monoculture towards in vivo- like 
infection models. For example, a new 3D intestinal tis-
sue model recapitulates aspects of human gastroenteri-
tis in response to Salmonella Typhimurium infection100. 
Dual RNA- seq of individual cell types isolated from this 
model helped to parse out the direct and indirect effects 
of bacterial infection in the epithelial and endothelial 
compartments. While it corroborated a previously 
observed connection between the type III secretion sys-
tems of Salmonella and the STAT3- dependent inflam-
matory response101, it revealed that this response stays 
local in the epithelial lining100.

Mouse infection models that can closely recapitu-
late human disease exist for many bacterial pathogens. 
Generally, bulk RNA- seq data from infected host tis-
sues or organs are difficult to analyse as altered tran-
script abundances represent the sum of differentially 
expressed genes and alterations in host cell- type com-
position. This notwithstanding, dual RNA- seq has 
been successfully used with some of these infection 
models, analysing Peyer patches, kidneys or lungs of 
mice infected with the extracellular pathogens Y. pseu-
dotuberculosis (Fig. 5d), S. aureus and P. aeruginosa, 
respectively102–104. Comparative dual RNA- seq of two 
different strains of S. pneumoniae in mouse lung tissue 
linked a SNP in the bacterial raffinose utilization path-
way to differential neutrophil recruitment as a potential 
cause of the divergent disease outcomes105. Examples of 
dual RNA- seq revealing how bacteria adapt to and even 
exploit the human immune response include a human 
challenge model infected with the extracellular path-
ogen Haemophilus ducreyi106 or samples from human 
patients with intracellular Mycobacterium leprae32. 
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Others used the technique on human skin biopsy 
samples to dissect the pathophysiology of monomi-
crobial and polymicrobial necrotizing soft- tissue 
infections107, revealing in vivo virulence expression 
patterns, including an upregulation of invasion genes 

of Streptococcus pyogenes during mono- infection and 
a pronounced interferon response in the surround-
ing host tissue. By contrast, a metatranscriptomic- like 
analysis of the bacterial expression data from polymi-
crobial biopsy samples revealed an elevated expression 
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Fig. 5 | Molecular aspects of host–pathogen interactions revealed by 
transcriptomics. a | Salmonella enterica subsp. enterica serovar 
Typhimurium infection of macrophages represents a prime example for the 
strength of combining different, complementary transcriptomic approaches 
to dissect the molecular aspects of an infection process from various angles. 
The global picture that emerges from the combined application of 
conventional bacterial RNA sequencing (RNA- seq)192, dual RNA- seq28,92 and 
single- cell RNA sequencing (scRNA- seq)127,128 argues that intra- macrophage 
Salmonella face oxidative, nitrosative and envelope stress. Moreover, the 
intracellular replication rates are variable and follow a gradient that 
correlates with the expression of Salmonella pathogenicity island 2 (SPI2) 
as well as PhoP- controlled genes and anti- correlates with SPI1 genes. The 
extreme populations along this gradient — persistent or fast- replicating 
bacteria — reside in pro- inflammatory M1- like or anti- inflammatory M2- like 
macrophages, respectively, and host macrophage polarization seems to be 
actively induced by secreted Salmonella effector proteins as exemplified by 
SteE131. b | A similar virulence strategy is applied by Mycobacterium 
tuberculosis (Mtb). Initial bulk dual RNA- seq of Mycobacterium- infected 

THP1 macrophages revealed the metabolic flexibility of this intracellular 
pathogen during infection97. Macrophage phenotype- specific dual RNA- seq 
dissected the mycobacterial–host interactions of interstitial (M1- like) and 
alveolar (M2- like) mouse macrophages108. c | Two isolates of the obligate 
intracellular pathogen Orientia tsutsugamushi — UT176 and Karp — were 
used to infect human endothelial cells and analysed by dual RNA- seq, 
revealing a common interferon- based host response in addition to 
strain- specific immune signalling cascades, likely to result from differential 
expression of virulence factors between the two bacterial strains99.  
d | Bacterial RNA- seq of Yersinia pseudotuberculosis in small caecal tissue 
biopsy samples revealed an early induction of type III secretion system 
(T3SS) genes during the acute phase and their repression when bacteria 
adopt a persistent state26. Tissue dual RNA- seq of this pathogen within ileal 
Peyer patches recapitulated the early induction of Yersinia T3SS — a 
mechanism dependent on the carbon storage regulator (Csr) system — and 
identified the host’s immune response to infection to be dominated by 
infiltrating neutrophils103. RNS, reactive nitrogen species; ROS, reactive 
oxygen species.

www.nature.com/nrg

R e v i e w s

370 | June 2021 | volume 22 



0123456789();: 

of lipopolysaccharide (LPS) biosynthetic genes and 
adhesion (but not invasion) factors as compared with 
mono- infections107. The data further indicated func-
tional specialization between the co- occurring spe-
cies, with key metabolic pathways only expressed by a 
fraction of the community members, thereby suggest-
ing bacterial synergy at the heart of the pathogenic-
ity of polymicrobial soft- tissue infections. The host 
response to polymicrobial infection was dominated 
by a strong pro- inflammatory profile (potentially as a 
result of elevated LPS levels) and genes for extracellular 
matrix components, indicative of activated fibroblasts. 
Eventually, these divergent host response patterns were 
exploited to pinpoint biomarkers specific for monomi-
crobial or polymicrobial infection for early therapeutic 
intervention.

When sequencing bulk tissue samples, cell 
type- specific gene expression may be lost in the aver-
age expression profiles. However, the resolution can be 
increased in two ways: before sequencing, by dissoci-
ating an infected tissue and isolating pre- defined cell 
types, or after sequencing, by utilizing cell type- specific 
markers to computationally deconvolute the heter-
ogeneous data. A proof- of- principle study of mouse 
colon tissue infected with Salmonella Typhimurium 
demonstrated that cell- type enrichment is generally 
feasible25. The use of a fluorescent Salmonella strain 
(expressing GFP) in combination with selective anti-
body staining enabled the separation of infected and 
bystander colonocytes. Another dual RNA- seq study 
used cell type- specific antibody staining and enrich-
ment of alveolar and interstitial macrophages from 
mouse lungs infected with M. tuberculosis108. However, 
as the mycobacteria were not fluorescent, the enriched 
macrophages were a mixture of infected and uninfected 
cells. To not out- dilute the bacterial reads, the sorted 
host macrophages were selectively lysed, followed by 
enrichment and mechanical lysis of the mycobacte-
rial cells and subsequent pooling of the host and bac-
terial lysates. This strategy yielded sufficient numbers 
of bacterial reads to observe different mycobacterial 
expression profiles in alveolar versus interstitial mac-
rophages, indicating that alveolar macrophages rep-
resent a conducive environment, whereas interstitial 
macrophages represent a more hostile environment  
(Fig. 5b). However, there are considerable technical chal-
lenges posed by lengthy tissue dissociation, antibody 
staining and cell sorting, all of which threaten tran-
scriptome integrity. Therefore, samples should ideally be 
fixed as early in the procedure as technically feasible25.

As a post- sequencing alternative to the physical 
enrichment of distinct cell types, in silico dissection of 
host expression signatures upon mouse infection with 
Y. pseudotuberculosis revealed extensive neutrophil infil-
tration into infected Peyer patches103. Likewise, a cell 
type- specific expression signature tool was employed to 
dissect alterations in the cellular composition of leprosy 
skin lesions32. Although not yet combined with infec-
tion studies, more sophisticated cell- type deconvolution 
analyses fed with scRNA- seq data109–111 bear great poten-
tial to increase the resolution of in vivo dual RNA- seq 
analysis in the future.

Triple RNA- seq. Conceptually speaking, it is a small 
step from dual RNA- seq to any type of ‘multi’ RNA- seq 
to investigate polymicrobial infections, especially with 
different types of pathogen. The latter is illustrated by 
a recent triple RNA- seq study in an ex vivo dendritic 
cell model co- infected with human cytomegalovirus 
and the pathogenic fungus Aspergillus fumigatus112; this 
combination of pathogens is a serious medical threat in 
organ and stem cell transplantation. The very different 
viral, fungal and human genomes facilitated the une-
quivocal assignment of the triple RNA- seq reads with 
negligible cross- mapping, revealing synergistic path-
ogen strategies during co- infection and inter- species 
expression network analyses pinpointing host genes 
with biomarker potential. The same approach should 
facilitate a better understanding of co- infections with 
a bacterium and a virus, which are common and usu-
ally lead to a more severe outcome than the respective 
mono- infections. Promising models to understand 
how one infection makes the host more susceptible to 
another include non- typhoidal Salmonella and human 
immunodeficiency virus113,114, Streptococcus spp. and 
influenza virus115, or Chlamydia spp. and human 
herpesvirus116.

Towards ‘omni- RNA- seq’ approaches. Increasing read 
lengths in combination with better computational algo-
rithms to resolve RNA- seq data at the taxonomic level 
enable RNA- seq studies of eukaryotic host cells inter-
acting with more than one bacterium and, ideally, with 
hundreds of different bacterial species as in the case of 
the gastrointestinal microbiota. Although not yet con-
ducted in a single- step experiment, some pioneering 
work towards such ‘omni’ RNA- seq includes transcrip-
tomics of the nasal epithelium of asthmatic children 
complemented with independently obtained metatran-
scriptomics of the nasal microbiome117. Similarly, the 
pulmonary microbiome was profiled at the RNA level 
and integrated with host lung transcriptome data in 
patients with chronic obstructive pulmonary disease 
(COPD)118. Despite donor variability, the number of 
patients (8 and 25) and control subjects (6 and 9) in 
these studies were sufficient to define the paediatric 
asthma- associated or COPD- associated microbiome 
signatures, correlating with a modulation of the host’s 
immune system (IL-1α was associated with asthmatic 
patients; a T helper 17 cell response correlated with 
COPD exacerbation).

Overall, the past 5 years have seen an enormous 
increase in the popularity of multi- organism RNA- seq 
approaches (Figs 1,4). While metatranscriptomics and 
dual RNA- seq are on the way to becoming routine tech-
niques in modern infection biology, the development 
of cross- species RNA- seq will continue by considering 
ever more interaction partners within an infected ‘holo-
biont’119 and tracing their complex interaction networks. 
Appropriate analysis of the resulting data mass demands 
sophisticated bioinformatic tools and should be followed 
up with experiments seeking to probe causality and 
functional consequences of the predicted multi- species 
interaction nodes. In parallel to these efforts, the field 
of infection research is currently shaken up by the 
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introduction of single- cell transcriptomics, which will 
be the focus of the next section.

Single- cell RNA- seq
The recent advances in scRNA- seq have ushered in a 
new era of transcriptomics, which has already wit-
nessed profound new discoveries, ranging from previ-
ously unknown cell types or physiological states to new 
principles of stochastic gene expression120. At the same 
time, cellular heterogeneity is increasingly understood 
to play important roles in host–pathogen interactions, 
for example, pathogens exploit pre- existing and/or 
induced cellular heterogeneity to establish an infection 
niche. Likewise, pathogens themselves can present with 
substantial phenotypic diversification, for example, 
Salmonella Typhimurium populations are character-
ized by a bistable expression of invasion genes already 
before host cell contact121 and gene expression variabil-
ity even intensifies over the course of the infection122. 
Physiologically, such a bet- hedging strategy primes 
a subpopulation of Salmonella for invasion, induc-
ing epithelial inflammation that in turn benefits the 
luminal population123,124. New transcriptomic methods 
going beyond bulk analysis are needed to capture and 
understand how cellular heterogeneity determines the 
outcome of host–microbe interactions.

Eukaryotic scRNA- seq. At this point in time, eukary-
otic scRNA- seq has become a routine technique, with 
a wide variety of experimental and computational pipe-
lines to choose from125 and several commercial plat-
forms available. Although transcriptome fixation is less 
common than in bulk sequencing approaches, the first 
RNA- preserving techniques are now compatible with 
single- cell applications126. Unsurprisingly, scRNA- seq 
is also making its way into infection biology10, with the 
pioneering work again using Salmonella Typhimurium 
to study heterogeneity in populations of infected host 
cells127,128. This bacterium had been known to display 
heterogeneous replication rates inside macrophages129 
and in vivo tissues130.

Using a macrophage infection model, scRNA- seq 
uncovered a rapid polarization of Salmonella- infected 
host cells that would have been impossible to detect by 
bulk RNA- seq (Fig. 5a). Moreover, it also showed that 
actively replicating Salmonella reside predominantly in 
anti- inflammatory, infection- permissive M2- like mac-
rophages, whereas non- replicating bacteria primarily 
dwell in pro- inflammatory M1 macrophages128, with 
bacterial replication rates correlating with the magni-
tude of the host’s interferon response127. Subsequent 
integration of the scRNA- seq data with correspond-
ing (population level) dual RNA- seq established a link 
between the expression of a specific Salmonella viru-
lence factor and macrophage polarization92. In other 
words, Salmonella actively manipulate their host cells to 
commit development towards a replication- permissive 
state131, a virulence strategy that this pathogen seems to 
share with M. tuberculosis108 (Fig. 5b). scRNA- seq data 
have also become available for human primary immune 
cells infected with either Salmonella Typhimurium or 
M. tuberculosis132. Moreover, there is a comprehensive 

atlas of cell type- specific gene expression signatures and 
cellular compositional changes within the gut epithe-
lium of a mouse model after Salmonella Typhimurium 
infection133. These single- cell datasets provide a rich 
resource for the study of heterogeneity in diverse host 
cell types.

A severe limitation of most in vivo scRNA- seq pro-
tocols is the loss of spatial information in the process 
of tissue dissociation. However, spatial information is 
pivotal to interpreting scRNA- seq results from infected 
samples because many bacterial pathogens colonize 
vastly different local microenvironments. By combining 
photoactivatable reporters and scRNA- seq, NICHE- seq 
overcomes this limitation and reconstructs the spatial 
organization of infection niches134. Specifically, trans-
genic mice ubiquitously expressing a photoactivatable 
GFP variant were infected with lymphocytic choriomen-
ingitis virus and, upon photoactivation of subregions in 
B cell follicles or the T cell area of inguinal lymph nodes 
with two- photon laser scanning microscopy, the tissue 
was dissociated and GFP- positive cells were collected 
by fluorescence- activated cell sorting and analysed by 
massively parallel scRNA- seq.

Another common limitation of scRNA- seq protocols 
is their dependence on oligo(dT)- primed RT, thereby 
losing information for many non- polyadenylated RNA 
classes, foremost, small eukaryotic RNAs. To overcome 
this limitation, a 3′ adapter ligation- based method 
termed Small- seq was developed, which allows for the 
profiling of miRNAs, tRNA fragments and snoRNAs 
in individual mammalian cells135,136. Another method, 
Holo- seq, captures both small RNA species and mRNAs 
from single cells by the addition of in vitro- transcribed 
carrier RNA, which allows conventional library con-
struction (as for bulk RNA- seq) and involves enzymatic 
digestion at the cDNA level prior to sequencing137. 
These developments reflect previous advancements 
in bulk RNA- seq, emanating from mRNA- centric 
approaches towards a ‘sequence- all’ strategy. The 
expression of several miRNAs and lncRNAs responds 
remarkably rapidly to a pathogenic stimulus, pro-
posing them as suitable biomarkers for diagnostics. 
Poly(A)- independent scRNA- seq may assess whether 
some of these non- coding RNAs are heterogeneously 
expressed and could serve as biomarkers also for specific 
cellular subpopulations during infection.

Bacterial scRNA- seq. While single- cell transcriptom-
ics began to revolutionize eukaryotic biology, techni-
cal hurdles prevented its robust application to bacteria 
until recently. As bacterial cells contain only a femto-
gram amount of RNA19, that is, >100 times less than the 
typical eukaryotic cell, a sensitive cDNA synthesis and 
amplification protocol is required. Whereas most cur-
rent eukaryotic scRNA- seq protocols have a lower detec-
tion limit of 10 copies of a transcript per cell, bacterial 
scRNA- seq must consider a much lower average copy- 
number of mRNAs (0.4 copies per cell138). The intrin-
sic lability of bacterial mRNAs (with half- lives in the 
minute range, as compared with hours in eukaryotes), 
is another issue and requires perforation of the bacterial 
envelope, cell lysis and subsequent RNA stabilization 
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to be done rapidly. Above all, however, the absence of a 
poly(A) tail on functional bacterial transcripts precludes  
oligo(dT)- based RT priming.

With the recent publication of robust bacterial 
scRNA- seq protocols139,140, single- bacterium transcrip-
tomics have now become a reality for major human 
pathogens. One study used Multiple Annealing and 
Tailing- based Quantitative scRNA- seq (MATQ- seq) 
— originally developed for eukaryotic scRNA- seq141 —  
to profile individual Salmonella Typhimurium and  
P. aeruginosa cells after their isolation by cell sorting140. 
Benchmarking with an established bulk RNA- seq com-
pendium for Salmonella revealed these single- bacterium 
transcriptomes to faithfully capture growth- dependent 
gene expression patterns. The other study introduced the 
so- called Prokaryotic Expression profiling by Tagging 
RNA In situ and sequencing (PETRI- seq) to study 
individual Gram- negative (E. coli) and Gram- positive  
(S. aureus) bacteria139. PETRI- seq also builds on a pro-
tocol previously developed for eukaryotic scRNA- seq; 
it uses combinatorial indexing to barcode transcripts 
in situ, a method originally known as ‘SPLiT- seq’ for 
Split- Pool Ligation- based Transcriptome sequencing142. 
Both MATQ- seq and PETRI- seq capture approximately 
200–300 different mRNAs per single bacterium, that is, 
close to ~5% of all mRNAs in a typical bacterial cell143 but 
two orders of magnitude up from previous approaches to 
studying the heterogeneity of gene expression in single 
bacteria with the help of fluorescent reporter genes. As 
of the time of writing, a third study reported microbial 
scRNA- seq at near genome- wide scale144. The protocol, 
termed microSPLiT, is also based on split- pool barcoding 
(like PETRI- seq) and was applied to single B. subtilis and 
E. coli cells and detected, on average, >300 mRNA copies 
per cell. Each of the three methods has strengths and 
weaknesses: MATQ- seq seems to have a lower dropout 
rate than PETRI- seq and microSPLiT, whereas split- pool 
barcoding overcomes the need to isolate single cells and 
thus offers much higher throughput. On a general note, 
although there are estimates of how many cells (and 
sequencing reads per cell) are typically required for an 
informative eukaryotic scRNA- seq study145,146, bacterial 
scRNA- seq is too much in its infancy for such general 
guidelines. In the MATQ- seq and PETRI- seq studies, 
19–27 or 204–875 bacteria, respectively, per condition 
were sequenced to ~60 million or ~40 million reads per 
library (without rRNA removal), but it remains unclear 
whether this was sufficient to resolve cellular varia-
bility in these samples to saturation. The microSPLiT 
study analysed >25,000 individual bacteria, enough 
to detect rare subpopulations144. The rule of thumb is 
that the complexity of the sample under investigation  
and the scope of the experiment will ultimately dictate 
the required cell numbers and sequencing depths.

The ramifications of single- bacterium RNA- seq for 
infection biology are manifold. To give just one exam-
ple, persisters are a dangerous threat in diverse infectious 
diseases as the respective bacteria withstand antibi-
otic exposure and cause infection relapse147. However, 
within their host niche, persisters seem far from being 
transcriptionally inert92. Bacterial scRNA- seq of path-
ogenic persisters isolated from infected patients could 

help to study their in vivo activities and provide func-
tional insights into when, how and why they reactivate. 
We expect that the technical refinement and automation 
of steps in the MATQ- seq, PETRI- seq and microSPLiT 
protocols will help bacterial scRNA- seq to become a 
widely used method for the study of microbial pathogens 
in infection settings.

Conclusions and future perspectives
RNA- seq has become a central methodology in the 
quest to understand the gene expression changes that 
ensue from host–microbe interactions. As described 
above, there has been a steady increase in the scope 
and sensitivity of RNA- seq- based methods. As regards 
scope, it is fair to say that, while the protein- centric 
history of infection biology tends to focus RNA- seq 
studies on mRNA expression levels, there is an increas-
ing appreciation of the many non- coding transcripts 
that may change in either infection partner, that is, the 
microorganism and the host. For example, in human 
cells infected with Salmonella, lncRNA profiles changed 
faster than those of mRNAs, while in the bacteria them-
selves, several highly conserved sRNAs can be used as 
proxy for important regulons, inferring which type of 
stress the pathogen is experiencing28. Beyond their role 
as putative biomarkers, there is accumulating evidence 
that individual non- coding RNAs impact the outcome 
of host–microbe interactions, again with Salmonella 
Typhimurium infection models taking the lead. Certain 
host lncRNAs, for example, decrease the susceptibility 
to Salmonella infection148,149 and individual miRNAs 
contribute to host defence against this pathogen150–153, 
while others are actively exploited by Salmonella 
to favour pathogenesis154. In turn, Salmonella itself 
dispatches an arsenal of its own non- coding RNA 
elements in the tug- of- war between infection and 
clearance28,155–158. We expect the non- coding branch of 
host–microbe interaction studies to further expand in 
the future, particularly in the context of obligate anaero-
bic pathogens and commensals that have so far escaped 
in- depth analysis.

RNA modification is another aspect for expand-
ing the scope of RNA- seq analysis of interspecies 
interaction. Traditionally known in rRNA and tRNA 
molecules, RNA modifications are now reported in  
many other cellular transcript classes, including mRNAs  
and regulatory non- coding RNAs in both bacteria159 and 
mammals160. Modifications influence the base pairing, 
conformation and protein- binding properties of RNA 
molecules and have been shown to impact bacterial vir-
ulence and host–microbe interactions161,162. There is no 
shortage of protocols to profile RNA modifications in 
a transcriptome- wide manner for single- sided bacterial 
or eukaryotic studies163,164. These workflows are typi-
cally based on the chemical reactions of specific base 
modifications in the substrate RNA samples, resulting 
in differential reverse- transcription efficiencies during 
cDNA synthesis. Additionally, direct RNA sequencing 
using nanopores165–167 (Box 2) has the capability to infer 
modified ribonucleotides from the kinetic variation of 
the electrostatic potential in the pore. It is thus generic 
and may offer a possibility to simultaneously detect the 
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epitranscriptomes of both the host and microorganism 
during their interplay.

With respect to sensitivity, ongoing progress in 
the acquisition78,79 and analysis86 of bacterial in vivo 
transcriptomes paves the way for an improved appre-
ciation of bacterial gene expression within complex, 
host- associated communities. Inasmuch as scRNA- seq 
may seem to be in its infancy, it has already provided 
important insights into cellular heterogeneity arising 
during infection and it now works for both eukaryotic 
and microbial cells. It is important to stress that the 
protocols available could also fill the gap between bulk 
RNA- seq protocols, which commonly require input 
RNA in the nanogram to microgram range, and true 
single- cell studies, enabling robust analysis of biopsy 
samples from an infected organ or the small popula-
tions of bacteria in the gut of an insect infection model. 
Another application might be the profiling of the RNA 
content of extracellular vesicles, which are known to be 
produced by eukaryotic and bacterial cells alike168,169. 
The Extracellular RNA Communication Consortium 
(ERCC) investigates the roles these RNAs play in inter-
cellular communication and their potential as biomark-
ers and therapeutic targets170. However, there is also an 
active debate about the putative function of vesicular 
RNA in interspecies communication171, which would 
greatly benefit from having experimentally deter-
mined RNA cargo profiles from single vesicles, under  
physiological conditions.

Temporal and spatial resolution is also bound to 
increase further. With regards to deciphering expres-
sion kinetics, methods using metabolic labelling allow 
for the discrimination of de novo- transcribed from 
pre- existing RNA molecules and, thus, a better under-
standing of the order of gene expression172. This type of 
tracking of de novo transcription has been combined 
with scRNA- seq to provide a fine- grained temporal pic-
ture of the early cellular response to a viral attack173; it 
should also be straightforward to apply it to cells infected 
with bacterial cells. In parallel, spatial transcriptomics174, 
including near- genome- wide fluorescence in  situ 
hybridization175 and in situ RNA- seq approaches that 
sequence nucleic acids directly in preserved tissue176,177, 
are on the rise. The introduction of NICHE- seq134 rep-
resented a breakthrough for studying the spatial aspects 
of host–microbe interactions at single- cell resolution. 
Although NICHE- seq is limited to local microenviron-
ments, integrating spatial/temporal expression profiling 
at single- cell resolution with imaging and bioinformatic 
tools for higher- order tissue reconstruction has been 
achieved (reviewed in ReFs178,179). Currently, technical 
constraints and high costs limit such analyses to small 
organs from mouse models. However, the potential to 
reconstruct infection processes in four dimensions at the 
tissue or organ scale is fascinating and would promise 
new avenues for interdisciplinary infection research.

The ultimate goal for RNA- seq in the present context 
is to simultaneously profile and correlate gene expression 
changes in single infected host cells, together with the 
pathogen. Dual scRNA- seq is in the starting blocks79,180 
but needs to be brought to a genome- wide scale. This 
should be in reach given that the now available bacterial 
scRNA- seq protocols139,140 are independent of poly(A) 
and should thus be able to capture the full complement 
of both eukaryotic and bacterial RNA as does bulk dual 
RNA- seq28. Improved by targeted cDNA removal37 and 
enrichment79, dual scRNA- seq promises the dissec-
tion of host–microbe interactions at an unprecedented 
resolution.

A crucial inherent caveat of any transcriptomic 
approach is the fact that mRNA levels may not neces-
sarily correlate with the abundance of the respectively 
encoded proteins138. This problem became very appar-
ent in dual RNA- seq of the obligate intracellular path-
ogen O. tsutsugamushi and human endothelial cells, for 
which complementary proteomics data were obtained99. 
Mathematical modelling concluded that the bacterial 
mRNA expression levels alone resulted in predictions 
of protein abundance that were slightly better than 
chance. Orientia may be an extreme case owing to its 
high content of transposable elements being associated 
with pervasive antisense transcription. Indeed, consid-
eration of the ratio of sense- to- antisense reads enhanced 
the predictability of protein levels from RNA- seq data 
substantially.

Nevertheless, such examples are a good reminder 
of the importance of validating RNA- seq- derived find-
ings at the protein level through methods for protein 
quantification that range from low- throughput (for 
selected key factors by western blot or flow cytometry) 
to mid- throughput (multiplex ELISA or ‘immuno- PCR’ 

Box 3 | Functional screens for factors shaping host–microbe interactions

Deep sequencing proved useful for high- throughput genetic perturbation screens  
to uncover bacterial or host factors contributing to infection that may eventually be 
exploited as therapeutic targets. For instance, random mutagenesis followed by  
fitness screening of the resultant mutant pool can be applied to identify factors that  
are functionally important under the given selection pressure. Transposon insertion 
sequencing233 has been widely harnessed to uncover virulence factors of diverse 
bacterial pathogens, including Salmonella enterica subsp. enterica serovar Typhimurium, 
Haemophilus influenza, Vibrio cholerae, Neisseria meningitidis, Streptococcus spp., 
Legionella pneumophila, Acinetobacter baumannii, Bordetella pertussis, Brucella abortus, 
Coxiella burnetii and Enterococcus faecium234–247.

Random mutagenesis has also been applied for functional genomics in mice and in 
human cells248,249. However, given their larger genomes, genetic screens in mammals are 
typically performed in a more targeted manner. Initially, RnA interference screens were 
employed to identify host factors that influence their infection by bacterial pathogens; 
however, such screens typically yielded a high number of false- positives, likely due to 
‘off- targeting’ by the small interfering RnA pool250. This drawback is overcome by recent 
CRISPR- based screens that have since been intensely used to address infection- related 
questions251. For human host models, multiplexed pools of single- guide RnAs are 
available252. This facilitates genome- wide screening approaches, for example, to 
identify host factors conferring resistance against intoxication by the Shiga toxin of 
enterohaemorrhagic Escherichia coli253, against the type III secretion system of Vibrio 
parahaemolyticus254, the typhoid toxin of Salmonella enterica subsp. enterica serovar 
Typhi255 or the Staphylococcus aureus toxin leukocidin256, and to uncover the colon 
epithelial receptor of Clostridium difficile toxin B257.

In parallel, CRISPR tools have been developed to deliberately perturb target gene sets 
in bacteria258 and can be exploited for in vivo screens of bacterial pathogenesis259,260.  
We predict that CRISPR- based perturbation screens will become a key technology for 
the discovery of novel bacterial colonization or virulence factors, especially amongst  
all the short genes261,262 that are less likely to be hit by random mutagenesis. Additionally, 
CRISPR technologies arise — in parallel with antisense oligonucleotides263 — as  
novel species- specific antibiotic candidates and programmable tools for microbiota 
editing264–266.
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with oligonucleotide- conjugated antibodies181) to 
high- throughput (Box 1). Yet, even the presence of a pro-
tein does not necessarily guarantee its functional impor-
tance under the given condition. Instead, protein activity 
might be regulated by post- translational modifications, 
particularly so for enzymes and signalling molecules182. 
In this respect, although outside the focus of this Review, 
it is worth mentioning that sequencing- based pertur-
bation screens are gaining traction for high- throughput 

studies of gene functionality within host–microbe 
inter action settings183 (Box  3). Integrating host– 
microbe transcriptomics with these functional genom-
ics data will eventually result in testable hypotheses and 
propose RNA molecules that could serve as future bio-
markers or drug targets to combat infectious diseases 
and microbial disorders.
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